Semi-Supervised Few-shot Image Classification Based on Subspace Learning

نویسندگان

چکیده

Abstract Few-shot image classification is an technology that uses minimal sample data to train the classifier or network and achieves a sure accuracy. Compared with based on big data, it has advantages of unlimited number samples fast processing speed. The purpose subspace learning learn good mapping. This mapping maps high-dimensional from visual low-dimensional semantic information space, which convenient for recognition, processing, classification. Therefore, this paper proposes use method extract features. On basis, studies semi-supervised few-shot classification, self-training algorithm improved overcome performance degradation caused by adding wrong pseudo label algorithm. It trained tested four mainstream datasets. specific significance research development

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meta-Learning for Semi-Supervised Few-Shot Classification

In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...

متن کامل

Semi-Supervised Few-Shot Learning with Prototypical Networks

We consider the problem of semi-supervised few-shot classification (when the few labeled samples are accompanied with unlabeled data) and show how to adapt the Prototypical Networks [10] to this problem. We first show that using larger and better regularized prototypical networks can improve the classification accuracy. We then show further improvements by making use of unlabeled data.

متن کامل

Semi-supervised classification based on random subspace dimensionality reduction

Graph structure is vital to graph based semi-supervised learning. However, the problem of constructing a graph that reflects the underlying data distribution has been seldom investigated in semi-supervised learning, especially for high dimensional data. In this paper, we focus on graph construction for semisupervised learning and propose a novel method called Semi-Supervised Classification base...

متن کامل

Semi-supervised learning for image classification

Object class recognition is an active topic in computer vision still presenting many challenges. In most approaches, this task is addressed by supervised learning algorithms that need a large quantity of labels to perform well. This leads either to small datasets (< 10, 000 images) that capture only a subset of the real-world class distribution (but with a controlled and verified labeling proce...

متن کامل

Graph-based multimodal semi-supervised image classification

We investigate an image classification task where training images come along with tags, but only a subset being labeled, and the goal is to predict the class label of test images without tags. This task is important for image search engine on photo sharing websites. In previous studies, it is handled by first training a multiple kernel learning classifier using both image content and tags to sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2171/1/012063